
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

2

Summary: Batch Processing

• Batch Processing

• Suitable for latency insensitive tasks

• Map-reduce prog model: mapper, reducer, (combiner, partitioner)

• Many Map-reduce jobs to compose dataflows

• They communicate via disk I/O

• Pros and Cons

• Pros: expressive, scalable, and fault tolerant

• Cons: low performance due to disk I/O, a bit less intuitive to think

of?

3

Next: Stream Processing

• Computation vs. I/O: Arithmetic intensity

• Loop fusion

• When MapReduce fails

• Spark and RDD

• Why Spark succeeded

4

Recall: Instruction

add %rbx, %rax

Register names

add %rbx, %rax

rax += rbx

is

5

Recall Mem

Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

How to measure the impact of I/O

• I/O is the primary enemy of computer engineers/scientists: it will

always slow down computation in every levels of the memory

hierarchy

• Processor reads/writes cache or memory

• Map-reduce save and load results from distributed storage

• Q: how we measure such slowdown?

• Arithmetic intensity

Arithmetic Intensity

𝐴𝐼 =
#𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑂𝑝

#I/O 𝑜𝑝

8

Arithmetic intensity

void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] + B[i];

}
Two loads, one store per math op

1. Read A[i]

2. Read B[i]

3. Add A[i]+B[i]

4. Store C[i]

9

Which program performs better? Program 1

void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] + B[i];

}

void mul(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] * B[i];

}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

Two loads, one store per math op

(arithmetic intensity = 1/3)

Two loads, one store per math op

(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3

10

Which program performs better? Program 2

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) {

for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * C[i];

}

// compute E = D + (A + B) * C

fused(n, A, B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops

arithmetic intensity = 3/5

computation fusion!

Core Problem of Map-reduce

Low arithmetic intensity

due to Disk I/O

12

PageRank Computation

Initially

• Assign weight 1.0 to each page

Iteratively

• Select arbitrary node and update its value

Convergence

• Results unique, regardless of selection ordering

R2

R3

R5

R1

R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)

13

Iterative algorithms must load from disk each iteration

Low

Arithmetic Intensity!

14

in-memory, fault-tolerant distributed computing

http://spark.apache.org/

15

Goals

• This guy thought UC GSR salary too low so he decided to make

some money (roughly 1M) via the Netflix challenge.

16

Goals

• Programming model for cluster-scale computations where there is

significant reuse of intermediate datasets

• Iterative machine learning and graph algorithms

• Interactive data mining: load large dataset into aggregate memory of

cluster and then perform multiple ad-hoc queries

• Don’t want incur inefficiency of writing intermediates to persistent

distributed file system (want to keep it in memory)

• Challenge: efficiently implementing fault tolerance for large-scale distributed

in-memory computations.

Three Necessary Conditions

• Memory: large (cheap) enough

• Network: fast (cheap) enough

• fault tolerance: at least as good as map-reduce

Typical Server Node

18

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

Typical Server Node

19

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

(80 GB/s)

(1 GB/s)*

(600 MB/s)*

(1
 G

B
/s

)

(50-100 MB/s)*

(100s GB)

(TBs)

(10s TBs)

* multiple channels

Time to read all data: 10s sec

hours

10s of hours

Memory Capacity

20

2002

2017

+29% per year
D

R
AM

 C
ap

ac
ity

•1990-2000: -54% per year

•2000-2010: -51% per year

•2010-2015: -32% per year

•(http://www.jcmit.com/memoryprice.htm)

21

Memory Price/Byte Evolution

http://www.jcmit.com/memoryprice.htm

Typical Server Node

22

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

30%

23

Cost
crosspoint!

SSDs vs. HDDs

•SSDs has become cheaper than (or as cheap as to) HDDs

•Transition from HDDs to SSDs has accelerate
• Already most instances in AWS have SSDs
• Digital Ocean instances are SSD only

•Going forward we can assume SSD only clusters

24

Typical Server Node

25

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

30%

>30%

Ethernet Bandwidth

26

1998

1995

2002

2017

33-40% per year

Typical Server Node

27

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

30%

33
-4

0%
>30%

What Does This Mean?

•Memory hierarchy has shift one
layer up

•HDD is virtually dead

•We have unlimited space of SSD

•Today’s RAM space = yesterday’s
SSD space

•Today’s SSD space = yesterday’s

HDD space

•Ethernet may become faster than

PCI/SATA bandwidth

28

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h
e

rn
e

t

30%

3
3
-4

0
% >30%

Three Necessary Conditions

•Memory: large (cheap) enough

•Network: fast (cheap) enough

•Fault tolerance: at least as good as map-reduce

30

Stream Processing

• Computation vs. I/O: Arithmetic intensity

• Loop fusion

• When MapReduce fails

• Spark and RDD

• Spark Ecosystem and Beyond

• Early ML systems: parameter server

31

Resilient distributed dataset (RDD)

32

RDD: Spark’s key programming abstraction:

• Read-only collection of records (immutable)

• RDDs can only be created by deterministic transformations on

data in persistent storage or on existing RDDs

• Actions on RDDs return data to application

Predefined Set of Operators

Transformation Action

34

RDD transformations and actions

35

Repeating the map-reduce example

// 1. create RDD from file system data

// 2. create RDD with only lines from mobile clients

// 3. create RDD with elements of type (String,Int) from line string

// 4. group elements by key

// 5. call provided reduction function on all keys to count views

var perAgentCounts = spark.textFile(“hdfs://log.txt”)

 .filter(x => isMobileClient(x))

 .map(x => (parseUserAgent(x),1));

 .reduceByKey((x,y) => x+y)

 .collect();

Array [String,int]

“Lineage”: Sequence of RDD

operations needed to compute

output

log.txt

36

Another Spark program

// create RDD from file system data
var lines = spark.textFile(“hdfs://log.txt”);

// create RDD using filter() transformation on lines

var mobileViews = lines.filter((x: String) => isMobileClient(x));

// instruct Spark runtime to try to keep mobileViews in memory
mobileViews.persist();

// create a new RDD by filtering mobileViews
// then count number of elements in new RDD via count() action
var numViews = mobileViews.filter(_.contains(“Safari”)).count();

// 1. create new RDD by filtering only Chrome views

// 2. for each element, split string and take timestamp of // page view
// 3. convert RDD to a scalar sequence (collect() action)
var timestamps = mobileViews.filter(_.contains(“Chrome”))

 .map(_.split(“ ”)(0))
 .collect();

Discussion

• How do you like this programming model?

• v.s. map reduce

• Flexibility and Expressiveness?

• Simplicity?

38

How do we implement RDDs?

• In particular, how should they be stored?

• var lines = spark.textFile(“hdfs://log.txt”);

• var lower = lines.map(_.toLower());

• var mobileViews = lower.filter(x => isMobileClient(x));

• var howMany = mobileViews.count();

Question: should we think of RDD’s like arrays?

CPU

DRAM

？？？

log.txt
block0

log.txt
block1

node 0 node 1 node 2 node 3

CPU

DRAM

？？？

log.txt
block0

log.txt
block1

CPU

DRAM

？？？

log.txt
block0

log.txt
block1

CPU

DRAM

？？？

log.txt
block0

log.txt
block1

39

How do we implement RDDs?

• In particular, how should they be stored?

• var lines = spark.textFile(“hdfs://log.txt”);

• var lower = lines.map(_.toLower());

• var mobileViews = lower.filter(x => isMobileClient(x));

• var howMany = mobileViews.count();

Question: Array -> In-memory representation would be huge! (larger than original flie on disk)

40

RDD partitioning and dependencies
var lines = spark.textFile(“hdfs://log.txt”);

var lower = lines.map(_.toLower());

var mobileViews = lower.filter(x => isMobileClient(x));

var howMany = mobileViews.count();

41

Implementing sequence of RDD ops efficiently
var lines = spark.textFile(“hdfs://log.txt”);

var lower = lines.map(_.toLower());

var mobileViews = lower.filter(x => isMobileClient(x));

var howMany = mobileViews.count();

• Recall “loop fusion” from start of lecture

• The following code stores only a line of the log file in memory,

and only reads input data from disk once (“streaming”

solution)

int count = 0;

while (inputFile.eof()) {

string line = inputFile.readLine();

string lower = line.toLower;

if (isMobileClient(lower))

count++;

}

42

Narrow dependencies

var lines = spark.textFile(“hdfs://log.txt”);

var lower = lines.map(_.toLower());

var mobileViews = lower.filter(x => isMobileClient(x));

var howMany = mobileViews.count();

“Narrow dependencies” = each partition of parent RDD referenced by at

most one child RDD partition

 - Allows for fusing of operations

(here: can apply map and then filter all at once on input element)

- In this example: no communication between nodes of cluster

(communication of one int at end to perform count() reduction)

43

Wide dependencies
groupByKey: RDD[(K,V)] → RDD[(K,Seq[V])]

“Make a new RDD where each element is a sequence containing all

values from the parent RDD with the same key.”

Wide dependencies = each partition of parent RDD referenced by multiple

child RDD partitions

44

Wide dependencies
Wide dependencies = each partition of parent RDD referenced by multiple

child RDD partitions

Challenges:

- Must compute all of RDD_A before computing RDD_B

- Example: groupByKey() may induce all-to-all communication as shown

above

- May trigger significant recompilation of ancestor lineage upon node failure

45

Scheduling Spark computations

• Actions (e.g., save()) trigger evaluation of Spark lineage graph.

• Stage 1 Computation: do nothing since input already materialized in memory

• Stage 2 Computation: evaluate map in fused manner, only actually materialize RDD F

• Stage 3 Computation: execute join (could stream the operation to disk, do not need to materialize)

46

Implementing resilience via lineage

• RDD transformations are bulk, deterministic, and functional

• Implication: runtime can always reconstruct contents of RDD from its lineage (the

sequence of transformations used to create it)

• Lineage is a log of transformations

• Efficient: since log records bulk data-parallel operations, overhead of logging is low

(compared to logging fine-grained operations, like in a database)

// create RDD from file system data
var lines = spark.textFile(“hdfs://15418log.txt”);
// create RDD using filter() transformation on lines
var mobileViews = lines.filter((x: String) => isMobileClient(x));

// 1. create new RDD by filtering only Chrome views
// 2. for each element, split string and take timestamp of // page view (first element)
// 3. convert RDD To a scalar sequence (collect() action)
var timestamps = mobileView.filter(_.contains(“Chrome”)) .map(_.split(“ ”)(0));

47

Upon node failure: recompute lost RDD partitions from

lineage

Must reload required subset of data from disk and
recompute entire sequence of operations given by lineage
to regenerate partitions 2 and 3 of RDD timestamps.

Note: (not shown): file system data is replicated so assume
blocks 2 and 3 remain accessible to all nodes

48

Spark Performance

Spark Improves MapReduce Over

• Easy for programmers because you express your computation by

chaining atomic operators

• Much fewer I/O -> very improved AI

Spark Cons?

• Debuggability

• Bulky

• Map-reduce is not bulky as it works well if you only have one

worker. That’s why now every PL has a “map” function

51

Modern Spark ecosystem

Story time: Spark and Databricks

• Initially just an open-source project by a few students

• The community grows because of advantages over Hadoop

and Map-reduce

• Students were about to graduate and could not commit time to

those projects, what’s next?

• “We asked Hortonworks if they wanted to take over Spark…They

were not willing… We started Databricks.”

• Hortonworks -> later merged with Cloudera at 2019

Spark and Databricks

• Cloudera: data platform company, founded by Hadoop authors

• Used to be a unicorn / high-profile / high-tech company

• Was beat hard by Databricks / Snowflake

• Went to public 2017, stock price keeps declining…, merged with

Hortonworks in 2018, went to private in 2021 after being acquired by

investment companies.

• Databricks: 7 cofounders, Initial CEO is Prof. Ion Stoica.

• They tried to sell Spark but were unsuccessful

• Switched to Ali Ghodsi: Iranian-Swedish, visitor to UC Berkeley, no US-

born nor US-educated

Spark and Databricks

• Databricks struggled for quite a few years

• Raised up to Series I (Seed, A, B, C, D, E, F, G, H, I)

• Almost failed during 2018 – 2020

• Data warehousing and OLAP gradually become a business, why?

• Competitors all failed

• Customer Education

• Data indeed bigger and bigger

• Intended to go public in 2022, but hit covid

• Valued at 100B today (is there any bubble?)

• Create 7 billionaires

• Competitions with Snowflake are intense

55

After Spark:

All Modern Data/ML Systems follow a similar architecture

Runtime

Manifest

Operators

Executable

A fixed set of operators

A trusted runtime with a small
set of pre-loaded

implementations

Executable

Compiler

Syntax

Programs

After Spark: Many new systems

Naiad

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Summary: Batch Processing
	Slide 3: Next: Stream Processing
	Slide 4: Recall: Instruction
	Slide 5: Recall Mem Hierarchy
	Slide 6: How to measure the impact of I/O
	Slide 7: Arithmetic Intensity
	Slide 8: Arithmetic intensity
	Slide 9: Which program performs better? Program 1
	Slide 10: Which program performs better? Program 2
	Slide 11: Core Problem of Map-reduce
	Slide 12: PageRank Computation
	Slide 13: Iterative algorithms must load from disk each iteration
	Slide 14
	Slide 15: Goals
	Slide 16: Goals
	Slide 17: Three Necessary Conditions
	Slide 18: Typical Server Node
	Slide 19: Typical Server Node
	Slide 20: Memory Capacity
	Slide 21: Memory Price/Byte Evolution
	Slide 22: Typical Server Node
	Slide 23
	Slide 24: SSDs vs. HDDs
	Slide 25: Typical Server Node
	Slide 26: Ethernet Bandwidth
	Slide 27: Typical Server Node
	Slide 28: What Does This Mean?
	Slide 29: Three Necessary Conditions
	Slide 30: Stream Processing
	Slide 31: Resilient distributed dataset (RDD)
	Slide 32: RDD: Spark’s key programming abstraction:
	Slide 33: Predefined Set of Operators
	Slide 34: RDD transformations and actions
	Slide 35: Repeating the map-reduce example
	Slide 36: Another Spark program
	Slide 37: Discussion
	Slide 38: How do we implement RDDs?
	Slide 39: How do we implement RDDs?
	Slide 40: RDD partitioning and dependencies
	Slide 41: Implementing sequence of RDD ops efficiently
	Slide 42: Narrow dependencies
	Slide 43: Wide dependencies
	Slide 44: Wide dependencies
	Slide 45: Scheduling Spark computations
	Slide 46: Implementing resilience via lineage
	Slide 47: Upon node failure: recompute lost RDD partitions from lineage
	Slide 48: Spark Performance
	Slide 49: Spark Improves MapReduce Over
	Slide 50: Spark Cons?
	Slide 51: Modern Spark ecosystem
	Slide 52: Story time: Spark and Databricks
	Slide 53: Spark and Databricks
	Slide 54: Spark and Databricks
	Slide 55: After Spark: All Modern Data/ML Systems follow a similar architecture
	Slide 56: After Spark: Many new systems

