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Summary: Batch Processing

• Batch Processing

• Suitable for latency insensitive tasks

• Map-reduce prog model: mapper, reducer, (combiner, partitioner)

• Many Map-reduce jobs to compose dataflows

• They communicate via disk I/O

• Pros and Cons

• Pros: expressive, scalable, and fault tolerant

• Cons: low performance due to disk I/O, a bit less intuitive to think 

of?
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Next: Stream Processing

• Computation vs. I/O: Arithmetic intensity

• Loop fusion

• When MapReduce fails

• Spark and RDD

• Why Spark succeeded
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Recall: Instruction

add %rbx,  %rax

Register names

add %rbx,  %rax

rax += rbx

is
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Recall Mem

Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers.

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved 
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk blocks 
retrieved from local disks.



How to measure the impact of I/O

• I/O is the primary enemy of computer engineers/scientists: it will 

always slow down computation in every levels of the memory 

hierarchy

• Processor reads/writes cache or memory

• Map-reduce save and load results from distributed storage

• Q: how we measure such slowdown?

• Arithmetic intensity



Arithmetic Intensity 

𝐴𝐼 =
#𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑂𝑝

#I/O 𝑜𝑝
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Arithmetic intensity

void add(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] + B[i]; 

} 
Two loads, one store per math op 

1. Read A[i] 

2. Read B[i]

3. Add A[i]+B[i]

4. Store C[i]
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Which program performs better? Program 1

void add(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] + B[i]; 

} 

void mul(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] * B[i]; 

} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

Two loads, one store per math op 

(arithmetic intensity = 1/3)

Two loads, one store per math op 

(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3
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Which program performs better? Program 2

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) { 

for (int i=0; i<n; i++) 

E[i] = D[i] + (A[i] + B[i]) * C[i]; 

} 

// compute E = D + (A + B) * C 

fused(n, A,  B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops 

arithmetic intensity = 3/5

computation fusion!



Core Problem of Map-reduce

Low arithmetic intensity 

due to Disk I/O
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PageRank Computation

Initially

• Assign weight 1.0 to each page

Iteratively

• Select arbitrary node and update its value

Convergence

• Results unique, regardless of selection ordering

R2

R3

R5

R1

R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)
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Iterative algorithms must load from disk each iteration

Low 

Arithmetic Intensity!
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in-memory, fault-tolerant distributed computing

http://spark.apache.org/
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Goals

• This guy thought UC GSR salary too low so he decided to make 

some money (roughly 1M) via the Netflix challenge.
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Goals

• Programming model for cluster-scale computations where there is 

significant reuse of intermediate datasets 

• Iterative machine learning and graph algorithms

• Interactive data mining: load large dataset into aggregate memory of 

cluster and then perform multiple ad-hoc queries

• Don’t want incur inefficiency of writing intermediates to persistent 

distributed file system (want to keep it in memory) 

• Challenge: efficiently implementing fault tolerance for large-scale distributed 

in-memory computations.



Three Necessary Conditions

• Memory: large (cheap) enough

• Network: fast (cheap) enough

• fault tolerance: at least as good as map-reduce



Typical Server Node
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Typical Server Node
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Memory Capacity
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•1990-2000: -54% per year

•2000-2010: -51% per year

•2010-2015: -32% per year

•(http://www.jcmit.com/memoryprice.htm)
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Memory Price/Byte Evolution

http://www.jcmit.com/memoryprice.htm


Typical Server Node
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Cost 
crosspoint!



SSDs vs. HDDs

•SSDs has become cheaper than (or as cheap as to) HDDs

•Transition from HDDs to SSDs has accelerate
• Already most instances in AWS have SSDs
• Digital Ocean instances are SSD only

•Going forward we can assume SSD only clusters

24



Typical Server Node
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Ethernet Bandwidth
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Typical Server Node
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What Does This Mean?

•Memory hierarchy has shift one 
layer up

•HDD is virtually dead

•We have unlimited space of SSD

•Today’s RAM space = yesterday’s 
SSD space

•Today’s SSD space = yesterday’s 

HDD space

•Ethernet may become faster than 

PCI/SATA bandwidth
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Three Necessary Conditions

•Memory: large (cheap) enough

•Network: fast (cheap) enough

•Fault tolerance: at least as good as map-reduce
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Stream Processing

• Computation vs. I/O: Arithmetic intensity

• Loop fusion

• When MapReduce fails

• Spark and RDD

• Spark Ecosystem and Beyond

• Early ML systems: parameter server
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Resilient distributed dataset (RDD)



32

RDD: Spark’s key programming abstraction:

• Read-only collection of records (immutable)

• RDDs can only be created by deterministic transformations on 

data in persistent storage or on existing RDDs

• Actions on RDDs return data to application



Predefined Set of Operators 

Transformation Action
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RDD transformations and actions
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Repeating the map-reduce example

// 1. create RDD from file system data 

// 2. create RDD with only lines from mobile clients 

// 3. create RDD with elements of type (String,Int) from line string 

// 4. group elements by key 

// 5. call provided reduction function on all keys to count views 

var perAgentCounts = spark.textFile(“hdfs://log.txt”) 

                  .filter(x => isMobileClient(x)) 

                  .map(x => (parseUserAgent(x),1)); 

                  .reduceByKey((x,y) => x+y) 

                  .collect();

Array [String,int]

“Lineage”: Sequence of RDD 

operations needed to compute 

output

log.txt
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Another Spark program

// create RDD from file system data 
var lines = spark.textFile(“hdfs://log.txt”); 

// create RDD using filter() transformation on lines 

var mobileViews = lines.filter((x: String) => isMobileClient(x)); 

// instruct Spark runtime to try to keep mobileViews in memory 
mobileViews.persist(); 

// create a new RDD by filtering mobileViews 
// then count number of elements in new RDD via count() action 
var numViews = mobileViews.filter(_.contains(“Safari”)).count(); 

// 1. create new RDD by filtering only Chrome views 

// 2. for each element, split string and take timestamp of // page view 
// 3. convert RDD to a scalar sequence (collect() action) 
var timestamps = mobileViews.filter(_.contains(“Chrome”)) 

               .map(_.split(“ ”)(0)) 
               .collect();



Discussion

• How do you like this programming model?

• v.s. map reduce

• Flexibility and Expressiveness?

• Simplicity?
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How do we implement RDDs?

• In particular, how should they be stored?

• var lines = spark.textFile(“hdfs://log.txt”); 

• var lower = lines.map(_.toLower()); 

• var mobileViews = lower.filter(x => isMobileClient(x)); 

• var howMany = mobileViews.count();

Question: should we think of RDD’s like arrays?

CPU

DRAM

？？？

log.txt
block0

log.txt
block1

node 0 node 1 node 2 node 3

CPU

DRAM

？？？

log.txt
block0

log.txt
block1

CPU

DRAM

？？？

log.txt
block0

log.txt
block1

CPU

DRAM

？？？

log.txt
block0

log.txt
block1
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How do we implement RDDs?

• In particular, how should they be stored?

• var lines = spark.textFile(“hdfs://log.txt”); 

• var lower = lines.map(_.toLower()); 

• var mobileViews = lower.filter(x => isMobileClient(x)); 

• var howMany = mobileViews.count();

Question: Array -> In-memory representation would be huge! (larger than original flie on disk)
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RDD partitioning and dependencies
var lines = spark.textFile(“hdfs://log.txt”); 

var lower = lines.map(_.toLower()); 

var mobileViews = lower.filter(x => isMobileClient(x)); 

var howMany = mobileViews.count();
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Implementing sequence of RDD ops efficiently
var lines = spark.textFile(“hdfs://log.txt”); 

var lower = lines.map(_.toLower()); 

var mobileViews = lower.filter(x => isMobileClient(x)); 

var howMany = mobileViews.count();

• Recall “loop fusion” from start of lecture

• The following code stores only a line of the log file in memory, 

and only reads input data from disk once (“streaming” 

solution)

int count = 0; 

while (inputFile.eof()) { 

string line = inputFile.readLine(); 

string lower = line.toLower; 

if (isMobileClient(lower)) 

count++; 

}
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Narrow dependencies

var lines = spark.textFile(“hdfs://log.txt”); 

var lower = lines.map(_.toLower()); 

var mobileViews = lower.filter(x => isMobileClient(x)); 

var howMany = mobileViews.count();

“Narrow dependencies” = each partition of parent RDD referenced by at 

most one child RDD partition

 - Allows for fusing of operations 

(here: can apply map and then filter all at once on input element) 

- In this example: no communication between nodes of cluster 

(communication of one int at end to perform count() reduction)
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Wide dependencies
groupByKey: RDD[(K,V)] → RDD[(K,Seq[V])]

“Make a new RDD where each element is a sequence containing all 

values from the parent RDD with the same key.”

Wide dependencies = each partition of parent RDD referenced by multiple 

child RDD partitions
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Wide dependencies
Wide dependencies = each partition of parent RDD referenced by multiple 

child RDD partitions

Challenges: 

- Must compute all of RDD_A before computing RDD_B 

- Example: groupByKey() may induce all-to-all communication as shown 

above 

- May trigger significant recompilation of ancestor lineage upon node failure
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Scheduling Spark computations

• Actions (e.g., save()) trigger evaluation of Spark lineage graph.

• Stage 1 Computation: do nothing since input already materialized in memory 

• Stage 2 Computation: evaluate map in fused manner, only actually materialize RDD F

• Stage 3 Computation: execute join (could stream the operation to disk, do not need to materialize )
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Implementing resilience via lineage

• RDD transformations are bulk, deterministic, and functional

• Implication: runtime can always reconstruct contents of RDD from its lineage (the 

sequence of transformations used to create it)

• Lineage is a log of transformations

• Efficient: since log records bulk data-parallel operations, overhead of logging is low 

(compared to logging fine-grained operations, like in a database)

// create RDD from file system data 
var lines = spark.textFile(“hdfs://15418log.txt”); 
// create RDD using filter() transformation on lines 
var mobileViews = lines.filter((x: String) => isMobileClient(x)); 

// 1. create new RDD by filtering only Chrome views 
// 2. for each element, split string and take timestamp of // page view (first element) 
// 3. convert RDD To a scalar sequence (collect() action) 
var timestamps = mobileView.filter(_.contains(“Chrome”)) .map(_.split(“ ”)(0));
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Upon node failure: recompute lost RDD partitions from 

lineage

Must reload required subset of data from disk and 
recompute entire sequence of operations given by lineage 
to regenerate partitions 2 and 3 of RDD timestamps.

Note: (not shown): file system data is replicated so assume 
blocks 2 and 3 remain accessible to all nodes
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Spark Performance



Spark Improves MapReduce Over

• Easy for programmers because you express your computation by 

chaining atomic operators 

• Much fewer I/O -> very improved AI



Spark Cons?

• Debuggability

• Bulky

• Map-reduce is not bulky as it works well if you only have one 

worker. That’s why now every PL has a “map” function
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Modern Spark ecosystem



Story time: Spark and Databricks

• Initially just an open-source project by a few students

• The community grows because of advantages over Hadoop 

and Map-reduce

• Students were about to graduate and could not commit time to 

those projects, what’s next?

• “We asked Hortonworks if they wanted to take over Spark…They 

were not willing… We started Databricks.”

• Hortonworks -> later merged with Cloudera at 2019



Spark and Databricks

• Cloudera: data platform company, founded by Hadoop authors

• Used to be a unicorn / high-profile / high-tech company

• Was beat hard by Databricks / Snowflake

• Went to public 2017, stock price keeps declining…, merged with 

Hortonworks in 2018, went to private in 2021 after being acquired by 

investment companies.

• Databricks: 7 cofounders, Initial CEO is Prof. Ion Stoica. 

• They tried to sell Spark but were unsuccessful

• Switched to Ali Ghodsi: Iranian-Swedish, visitor to UC Berkeley, no US-

born nor US-educated



Spark and Databricks

• Databricks struggled for quite a few years

• Raised up to Series I (Seed, A, B, C, D, E, F, G, H, I)

• Almost failed during 2018 – 2020

• Data warehousing and OLAP gradually become a business, why?

• Competitors all failed

• Customer Education 

• Data indeed bigger and bigger

• Intended to go public in 2022, but hit covid

• Valued at 100B today (is there any bubble? )

• Create 7 billionaires

• Competitions with Snowflake are intense
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After Spark:

All Modern Data/ML Systems follow a similar architecture

Runtime

Manifest

Operators

Executable

A fixed set of operators

A trusted runtime with a small 
set of pre-loaded 

implementations

Executable

Compiler

Syntax

Programs



After Spark: Many new systems

Naiad
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