https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

Summary: Batch Processing

® Batch Processing
* Suitable for latency insensitive tasks
* Map-reduce prog model: mapper, reducer, (combiner, partitioner)
* Many Map-reduce jobs fo compose dataflows
* They communicate via disk I/O
®* Pros and Cons
®* Pros: expressive, scalable, and tault tolerant

* Cons: low performance due to disk I/O, a bit less infuitive to think
of¢

Next: Stream Processing

* Computation vs. I/O: Arithmetic intensity
* Loop fusion

* When MapReduce fails

* Spark and RDD

* Why Spark succeeded

Recall: Instruction

Register names

/\

add %rbx, %rax
IS

rax += rbx

Recall Mem
. LO:
H I e rO rC h y Regs CPU registers hold words retrieved

from the L1 cache.

11: / Ll cache

Smaller, (SRAM) L1 cache holds cache lines retrieved
from the L2 cache.
faster, 19 L2 cache
and y
. (SRAM) |
costlier L2 cache holds cache lines
(per byte) retrieved from L3 cache.
storage L3: L3 cache
devices (SRAM)
L3 cache holds cache lines
retrieved from main memory.
L4: Main memory
Larger, (DRAM)
slower Main memory holds disk blocks
and retrieved from local disks.
cheaper 5. Local secondary storage
(per byte) (local disks)
storage Local disks hold files
devices retrieved from disks
onh remote servers.
L6: Remote secondary storage

(e.g., Web servers)

How to measure the impact of [/O

* |/O Is the primary enemy of computer engineers/scientists: it will
always slow down computation in every levels of the memory
hierarchy
® Processor reads/writes cache or memory
* Map-reduce save and load results from distributed storage

* Q: how we measure such slowdowne

* Arithmetic intfensity

Arithmetic Intensity

#(Compute Op
Al = ——
#1/0 op

Arithmetic Intensity

void add(intn, float* A, float* B, float* C){
for (int i=0; i<n; i++)

Cli] = A[i] + BJi]; Two loads, one store per math op

1. Read Ali]
2. Read BJ]
3. Add Ali]+B]i]
4. Store CJI]

Which program performs bettere Program |

void add(intn, float* A, float* B, float* C){
for (int i=0; i<n; i++)
Cli] = Ali] + B[i];
}

void mul(int n, float* A, float®* B, float* C){
for (int i=0; i<n; i++)
C[i] = A[il * B[i];
}

float* A,*B, *C, *D, *E, *tmpl, *tmp2;
// assume arrays are allocated here

// compute E =D + ((A + B)* C)
add(n, A, B, tmp1);

mul(n, tmpl1, C,tmp?2);

add(n, tmp2, D,E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3

10

Which program pertforms befttere Program 2

float* A,*B, *C, *D, *E, *tmpl, *tmp2;

// assume arrays are allocated here

// compute E =D + ((A + B)* C)

add(n, A, B, tmp1); Overall arithmetic intensity = 1/3
mul(n, tmpl, C,tmp2);

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C,float* D,

float* E) {
for (int i=0; i<n; i++)
E[i] = D[i] + (A[i] + B[i]) * C[il; Four loads, one store per 3 math ops
) arithmetic intensity = 3/5

// compute E =D + (A+ B)* C
fused(n, A, B,C, D,E);

compvutation fusion!

Core Problem of Map-reduce

| ow arithmetic intensity
due to Disk [/O

12

PageRank Computation

Initially
* Assign weight 1.0 to each page R,

Iteratively

® Select arbitrary node and update its value

Convergence Ri € 0.1+0.9* (%2R, + Y R;3+ % Rs)

® Results unique, regardless of selection ordering

13

'terative algorithms must load from disk each iteration

void pagerank mapper(graphnode n, map<string,string> results) {
float val = compute update value for n
for (dst in outgoing links from n)
results.add(dst.node, val);

}

void pagerank reducer{graphnode n, list<float> values, float& result) {
float sum = 9.0;

f 1 1
or (v in values) LOW

result = sum;

} Arithmetic Intfensity!

for (i = © to NUM_ITERATIONS) {
input = load graph from last iteration
output = file for this iteration output
runMapReducelob(pagerank_mapper, pagerank reducer, result[i-1], result[i]);

}

14

oar

IN-memory, fault-tolerant distributed computing
NiTp://spark.apache.org/

Goals

® This guy thought UC GSR salary too low so he decided to make

some money (roughly 1M) via the Netflix challenge.

Netflix Prize 3 2 languages v Matei Zaharia

Article Talk Read Edit View history Tools v

e : Associate Professor, Computer Science
From Wikipedia, the free encyclopedia

matei@berkeley.edu

The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings Recommender systems Google Scholar | LinkedIn | Twitter

for films, based on previous ratings without any other information about the users or films, i.e. without the

o - . Concepts ; : :
users being identified except by numbers assigned for the contest. R o I'm an associate professor at UC Berkeley (previously Stanford), where | work on computer systems
- _ _ , _ , _ Star ratings - Long tail and machine learning. I'm also co-founder and CTO of Databricks.
The competition was held by Netflix, a video streaming service, and was open to anyone who is neither
. . . . Methods and challenges
connected with Netflix (current and former employees, agents, close relatives of Netflix employees, etc.) nor e —
. _ . old start - Collaborative filtering ‘I'mi ' . '
a resident of certain blocked countries (such as Cuba or North Korea).[l On September 21, 2009, the grand Dimensionalty reduction - Interests: I'm interested in computer systems for large-scale workloads such as Al, data analytics
prize of US$1,000,000 was given to the BellKor's Pragmatic Chaos team which bested Netflix's own Implicit data collection -
algorithm for predicting ratings by 10.06%.[4] ltem-item collaborative filtering -

Matrix factorization * Preference elicitation -

Cimilaritv caarrh

15

16

Goals

®* Programming model for cluster-scale computations where there is
significant reuse of infermediate datasets

®* |[terative machine learning and graph algorithms
®* Interactive data mining: load large dataset into aggregate memory of
cluster and then perform multiple ad-hoc queries

* Don’t want incur inefficiency of writfing infermediates to persistent

distributed file system (want o keep it In memory)

* Challenge: efficiently implementing fault tolerance tor large-scale distributed
IN-Mmemory computations.

Three Necessary Conditions

* Memory: large (cheap) enough
* Network: fast (cheap) enough

* fault tolerance: at least as good as map-reduce

Typical Server Node

SATA

ENIEINE

Typical Server Node

[imetoread all data; 10s sec
(80 GB/s)
Memory Bus

":::.E:.":’-::'::;"-.,.‘ '0:"':';::.::.:::-{:.?
AN
/} (1 GB/s)*

PCI

(1 GB/s)

*
cara (600MBJs)

hours

Ethernet

(50-100 MB/s)* 4 (53

N
*multiple channels

Memory Capacity

1Tb _
m MooreslLaw

>12Gb 1, 4.e DRAM DensityShipped

256Gb 1979 - 2003: 51% CAGE
2003 - 2011: 29% CAGR
128Gb .

64Gb DRAM Density Gap is Increasing

32Gb
16Gb
8Gb
4Gb

2Gh
1Gb

512Mb
256Mb

‘ +29% peryear

DRAM Capacity

io-3.5 years behind
256Mb - 3 years behind Moore's law

1994 1998 2002 2006 2010 2014 2018

Memory Price/Byte Evolution

*1990-2000: -54% per year
*2000-2010: -51% per year

*2010-2015: -32% per year

*(http://www.jcmit.com/memoryprice.htm)

http://www.jcmit.com/memoryprice.htm

Typical Server Node

SATA

ENIEINE

Projection 2015-2020 of Capacity Disk & Scale-out Capacity NAND Flash

S500
$470 o
£ 100 \ 732%
O
(W
0 \
= S400
<
z —
o3 3% 498%
ﬁ 0
5 300] \ Cost
=
g 5250 | \ crosspoint
Q W.5237 ° .
S 300%
2 A <
E_ $150 $151 €140
S . 139% W s113
. 2100 B-$91
"!;" 19% Q Ssz E 574
o 550 —= —
-50% 30
< 816
S0 © $9
2015 2016 2017 2018 2019 2020

&= 4-year Cost/TB SSD includes Packaging, Power, Cooling, Maintenance, Space, SSD Data Reduction & Sharing
W 4-Year Cost/TB Capacity Disk includes Packaging, Power, Cooling, Maintenance, Space & Disk Data Sharing

Ratio Effective Price HDD Disk:NAND Flash

800%

700%

600%

500%

400%

300%

200%

100%

0%

-100%

Source: © Wikibon 2015. 4-Year Cost/TB Magnetic Disk & SSD, including Packaging, Power, Maintenance, Space, Data Reduction & Data Sharing

Ratio Effective Price HDD Disk:NAND Flash

SSDs vs. HDDs

*SSDs has become cheaper than (or as cheap as to) HDDs

eTransition from HDDs to SSDs has accelerate
o Already mostinstancesin AWS have SSDs
» Digital Ocean instances are SSD only

*Going forward we can assume SSD only clusters

Typical Server Node

ENIEINE

Ethernet Bandwidth

Speed (b/s)

1T
400G

100G
40G

10G

-
9,

100M

10M

GbE ‘

- -
s
> o
- .“
- ' W
- »
‘-‘ L '. .) .: 5
T { -
10};»/ ,
\ 5
- .
'/
"
-

100 Mb/s
Etherme

10 Mb/s
Ethernet

1980

1990 2000 2010
Initial Standard Completed

2020

33-40% peryear

@ Ethernet Speed
O Speed in development

(:0 Possible Future Standard

Typical Server Node

ENIEINE

What Does This Mean@

* Memory hierarchy has shiftf one

layer up

*HDD Is virt
* We have

ually dead

unlimited space of SSD

*Today’'s RAM space = yesterday’s

SSD space

* Today’s SSD space = yesterday'’s

HDD space

* Ethernet may become taster than
PCI/SATA bandwidth

Ethernet

N
p o
4 ' o
BN e
‘\ . T et o
/ : y R
N VA
& - o
S N _’.}. o
N e
DT DR
PORPLN VN A
NS
S l,‘--"\-."\:"
e AR
r BT RS
: QPN i
». C OV
o TRX P
e o
\‘ S s
R
O
h

SATA

%
>

Three Necessary Conditions

* Memory: large (cheap) enough &
* Network: fast (cheap) enough &

* Fault tolerance: at least as good as map-reduce

30

Stream Processing

* Computation vs. I/O: Arithmetic intensity
* Loop fusion

* When MapReduce fails

* Spark and RDD

® Spark Ecosystem and Beyond

®* Farly ML systems: parameter server

31

Resllient distributed dataset (RDD)

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory, based on coarse-
grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programming models for iter-
ative jobs, such as Pregel, and new applications that these
models do not capture. We have implemented RDDs in a
system called Spark, which we evaluate through a variety
of user applications and benchmarks.

1 Introduction

Cluster computing frameworks like MapReduce [10] and
Dryad [19] have been widely adopted for large-scale data
analytics. These systems let users write parallel compu-
tations using a set of high-level operators, without having
to worry about work distribution and fault tolerance.
Although current frameworks provide numerous ab-
stractions for accessing a cluster’s computational re-
sources, they lack abstractions for leveraging distributed
memory. This makes them inefficient for an important
class of emerging applications: those that reuse interme-
diate results across multiple computations. Data reuse is
common in many iterative machine learning and graph
algorithms, including PageRank, K-means clustering,
and logistic regression. Another compelling use case is
interactive data mining, where a user runs multiple ad-
hoc queries on the same subset of the data. Unfortu-
nately, in most current frameworks, the only way to reuse
data between computations (e.g., between two MapRe-
duce jobs) is to write it to an external stable storage sys-

tion, which can dominate application execution times.

Recognizing this problem, researchers have developed
specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] is a system for
iterative graph computations that keeps intermediate data
in memory, while HalLoop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computation patterns (e.g., looping a series of
MapReduce steps), and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets
into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results in memory, control
their partitioning to optimize data placement, and ma-
nipulate them using a rich set of operators.

The main challenge in designing RDDs is defining a
programming interface that can provide fault tolerance
efficiently. Existing abstractions for in-memory storage
on clusters, such as distributed shared memory [24], key-
value stores [25], databases, and Piccolo [27], offer an
interface based on fine-grained updates to mutable state
(e.g., cells in a table). With this interface, the only ways
to provide fault tolerance are to replicate the data across
machines or to log updates across machines. Both ap-
proaches are expensive for data-intensive workloads, as
they require copying large amounts of data over the clus-
ter network, whose bandwidth is far lower than that of
RAM, and they incur substantial storage overhead.

In contrast to these systems, RDDs provide an inter-
face based on coarse-grained transformations (e.g., map,
filter and join) that apply the same operation to many
data items. This allows them to efficiently provide fault
tolerance by logging the transformations used to build a
dataset (its lineage) rather than the actual data.! If a parti-
tion of an RDD is lost, the RDD has enough information
about how it was derived from other RDDs to recompute

RDD: Spark’s key programming abstraction:

®* Read-only collection of records (immutable)
* RDDs can only be created by deterministic transformations on

data in persistent storage or on existing RDDs

RDDs l .textFile(...)
// create RDD from file system data lines
var lines = spark.textFile(“hdfs://15418log.txt”);
{ fitter(...

// create RDD using filter() transformation on lines
var mobileViews = lines.filter((x: String) => isMobileClient(x)); mobileViews
// another filter() transformation ; l.ﬁ"ﬂﬂ"J
var safariViews = mobileViews.filter((x: String) => X.contains(“Safari”));

safariViews
// then count number of elements in RDD via count() action
var numViews = safariViews.count(); l-tﬂllllt[]

int numViews

Predefined Set of Operators

Transformation AcCTion

RDD transformations and actions

Transformations: (data parallel operators taking an input RDD to a new RDD)

map(f:T=-U) : RDD[T]= RDD[U]
filter(f : T=>Bool) : RDD[T]= RDDIT]
flatMap(f : T = Seq[U]) RDD|[T] = RDD[U]
sample(fraction : Float) RDDI[T] = RDDI[T] (Deterministic sampling)
groupByKey() RDDI[(K, V)] = RDDI[(K, Seq[V])]
reduceByKey(f : (V,V)=V) : RDD[(K, V)] = RDD[(K, V)]
union() : (RDD[T],RDD[T]) = RDDIT]
) .
)
)
)
)
)

join((RDDI[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup((RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W]))]
crossProduct((RDDI[T],RDD[U]) = RDDI[(T, U)]
mapValues(f : V=W RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K] RDDI[(K, V)] = RDDI[(K, V)]
partitionBy(p : Partitioner[K] RDDI[(K, V)] = RDDI[(K, V)]

Actions: (provide data back to the “host” application)
count(RDD|[T] = Long

)
collect() : RDD[T] = Seq[T]
reduce(f:(T,T)=T) : RDD[T]=T
) .
)

lookup(k : K RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String Outputs RDD to a storage system, e.g., HDFS

35

Repeating the map-reduce example

// 1. create RDD from file system dato
// 2. create RDD with only lines from mobile clients

// 3. create RDD with elements of
/] 4. group elements by key

// 5. call provided reduction func:

var perAgentCounts = spark.textF

type (String.Int) from line string

1on on all keys to count views
le("hdfs://log.txt")

filter(x => isMobileClient(x))
.Mmap(x => (parseUserAgent(x),1));
reduceByKey((x,y) => x+vy)
.collect();

Array [String,int]

“Lineage”: Sequence of RDD
operations needed to compute
outpuft

l0Q.TxT

l textFile(...)

l filter(isMobileClient{(...))

l .map(parseUserAgent(...)

l reduceByKeyl(...)

l .collect()

PerAgentCounts

36

Another Spark program

// create RDD from file system data
var lines = spark.textFile(*hdfs://log.txt");

l AtextFile(...)
// create RDD using filter() transformation on lines lines
var mobileViews = lines.filter((x: String) => isMobileClient(x)); l,ﬁlter(isMobiIeCIient(...)))
. mobileViews

// instruct Spark runtime to try to keep mobileViews in memory o P o

. . . filter(contains(“Safari”); filter(contains(“Chrome”);
mobileViews.persist(); /\
// create a new RDD by filtering mobileViews l.count() l .map(split(...))
// tThen count number of elements in new RDD via count() action numViews
var numViews = mobileViews.filter(_.contains(Safari”)).count(); l collectl)

timestamps

// 1. create new RDD by filtering only Chrome views

// 2. for each element, split string and take timestamp of // page view
// 3. convert RDD to a scalar sequence (collect() action)

var timestamps = mobileViews.filter(_.contains(*Chrome’))

map(_.split(* ") (0))
.collect();

Discussion

* How do you like this programming model?
® v.S. map reduce
* Flexibility and Expressivenesse

* Simplicity?

How do we iImplement RDDs¢

* |n parficular, how should they be storede
® varlines = spark.textFile(*hdfs://log.txt");
* varlower = lines.map(_.toLower());
* var mobileViews = lower filter(x => isMobileClient(x));

* var howMany = mobileViews.count();
Question: should we think of RDD's like arrays®e

CPU CPU CPU CPU
DRAM DRAM DRAM DRAM
??? ? 7?7 ??? ??7?

loQ.txt loQ.Txt loQ.txt loQ.txt loQ.txt log.Txt loQ.txt loQ.Txt
blockO block blockO block blockO block blockO block

38 node 0O node 1| node 2 node 3

How do we iImplement RDDs¢

* |n parficular, how should they be storede
* varlines = spark.textFile (“hdfs://log.txt");

* varlower = lines.map(_.toLower|());
* var mobileViews = lower filter(x => isMobileClient(x));
* var howMany = mobileViews.count();

39

Question: Array -> In-memory representation would be huge! (larger than original flie on disk)

CPU CPU CPU CPU
DRAM DRAM DRAM DRAM
lines lines lines lines lines lines lines lines
(partition 0) (partition 1) (partition 2) (partition 3) (partition 4) (partition 5) (partition 6) (partition 7)
lower lower lower lower lower lower lower lower
(partition 0) (partition 1) (partition 2) (partition 3) (partition 4) (partition 5) (partition 6) (partition 7)
mobileViews mobileViews mobileViews mobileViews mobileVie mobileViews mobileViews obileViews
(part0) \ (part 1) (P;t 2) (part3) I (part 4) | (part 5) (part 6) \ (part7)
Disk Disk Disk Disk

40

RDD partitioning and dependencies

var lines = spark.textFile(*hdfs://log.txt");

var lower = lines.map(_.toLower());

var mobileViews = lower filter(x => isMobileClient(x));
var howMany = mobileViews.count();

Node 0 Node 1 Node 2 Node 3
block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7
(0-1000) (1000-2000) | :
wo £ f L f
lines lines lines lines lines lines lines lines
part0 part1 : part 2 part3 : part4 part5 part6 part7
(0-1000) (1000-2000) | :
map) 1 [| | ! ! !
lower lower lower lower lower lower lower lower
part0 part 1 : part 2 part3 : part4 part 5 part6 part7
(0-1000) (1000-2000) | :
wo 11 1 T F T f i
. mobileViews mobileViews . mobileViews | mobileViews mobileViews
mobileViews : mobileViews | : rt4 mobileViews | : 7
part0 (2122;r:1:nts) e part3 | : = parts || Pante pa
(670 elements) .

Black lines show dependencies between RDD partitions.

Implementing sequence of RDD ops efficiently

var lines = spark.textFile(*hdfs://log.txt");

var lower = lines.map(_.toLower());

var mobileViews = lower filter(x => isMobileClient(x));
var howMany = mobileViews.count();

® Recall "loop fusion” from start of lecture

®* The following code stores only a line of the log file in memory,
and only reads input data from disk once (“streaming”
solution)

int count = 0;

while (inputFile.eof()) {

string line = inputFile.readLine();
string lower = line.toLower;

It (isMobileClient(lower))
count++;

var lines = spark.textFile(*hdfs://log.txt");

var lower = lines.map(_.toLower());

var mobileViews = lower filter(x => isMobileClient(x));
var howMany = mobileViews.count();

Narrow dependencies

“Narrow dependencies” = each partition of parent RDD referenced by at
most one child RDD partition

- Allows for fusing of operations
(here: can apply map and then filter all at once on input element)
- In this example: no communication between nodes of cluster
(communication of one int at end to perform count() reduction)

42

Node 0 Node 1 Node 2 Node 3

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7
(0-1000) (1000-2000)

load) 1 | I 1 1 1 |
lines lines lines lines lines lines lines lines
part0 part1 part2 part3 part4 part5 part6 part7
(0-1000) (1000-2000)

map) 1| ! 1 1 ! ! ! !
lower lower lower lower lower lower lower lower
part0 part1 . part2 part3 part4 part5 part6 part?
(0-1000) (1000-2000) | :

filter() T

|

T

T

|

T

T

|

- mobileViews mobileViews YT mobileViews o mobileViews mobileViews
mobileViews part1 | : part 2 mol;gﬁt\!;ews : part 4 mobileViews | : part6 part7
mmpall'tﬂ | [212¢lements) | : part5

alamonte]

Wide dependencies
groupByKey: RDDI[(K,V)] — RDD[(K,Seq[V]]]

“Make a new RDD where each element is a sequence containing all
values from the parent RDD with the same key.”

RDD_A RDD_A RDD_A RDD_A
part0 part1 part2 part3

a E — . -

.groupByKey() __‘;"Q
RDD_B RDD_B RDD_B E RDD_B

part0 : part 1 part2 part3

Wide dependencies = each partition of parent RDD retferenced by multiple
child RDD partitions

44

Wide dependencies

Wide dependencies = each partition of parent RDD referenced by multiple
child RDD partitions

RDD A RDD A RDD A RDD A

part0 . part1 . part 2 5 part 3

.groupByKey() "‘274
RDD B RDD B RDD B RDD B
part0 part 1 part 2 part3

Challenges:
- Must compute all of RDD_A before computing RDD_B
- Example: groupByKey() may induce all-to-all communication as shown
above
- Mayy trigger significant recompilation of ancestor lineage upon node failure

Scheduling Spark computations

Stage 1 Computation Stage 2 Computation

RDD_C RDD_E RDD_E
part1 part0 part1

/ /

RDD_F RDD_F
part 2 part3

Jjoin()
RDD_G RDD. G RDD..
part0 part1 part 2
save() bchko MOL Mjk 5 B =materialized RDD

®* Actions (e.q., save()) frigger evaluation of Spark lineage graph.
* Stage 1 Computation: do nothing since input already materialized in memory
* Stage 2 Computation: evaluate map in fused manner, only actually materialize RDD F
* Stage 3 Computation: execute join (could stream the operation to disk, do not need to materialize)

46

Implementing resilience via lineage

e RDD transformations are bulk, deterministic, and functional

* |mplication: runtime can always reconstruct contents of RDD from its lineage (the

sequence of transformations used to create it)

* Lineage is alog of transformations

* Efficient: since log records bulk data-parallel operations, overhead of logging is low

(compared to logging fine-grained operations, like in a database)

// create RDD from file system data

var lines = spark.textFile(*hdfs://15418log.txt");

// create RDD using filter() transformation on lines

var mobileViews = lines.filter((x: String) => isMobileClient(x));

// 1. create new RDD by filtering only Chrome views

// 2. tor each element, split string and take timestamp of // page view (first element)
// 3. convert RDD To a scalar sequence (collect() action)

var timestamps = mobileView filter(_.contains(“Chrome”)) . map(_.split(* ") (0));

], Joad(...)

lines

| filter(...

mobileViews

{ filter(...

Chrome views

L .map(_.split(“~)0))

timestamps

4,

Upon node failure: recompute lost RDD pcr’ri’rioni from
Joad(...)

ineage

Must reload required subset of data from disk and
recompute entire seguence of operations given by lineage
fo regenerate partitions 2 and 3 of RDD timestamys.

Note: (hot shown): file system data is replicated so assume
blocks 2 and 3 remain accessible to all nodes

lines

¥ filter(...)

mobileViews

¥ filter(...

Chrome views

¥ .map(_.split(“")(0))

timestamps

CPU

CPU CPU
DRAM DRAM
timestamps | | timestamps timestamps | | timestamps
part 0 part 1 part4 part5

mobileViews | | mobileViews
part 0 part 1

mobileViews | | mobileViews
part4 part5

DRAM

part6

timestamps | | timestamps

part?7

part 6

mobileViews | | mobileViews

part7

48

Spark Performance

Iteration time (s)

First Iteration
B| ater lterations

To)
F
F
N (q\|
(o ©
<t
o

H 139

-
(00

1182

(100GB of dataon a
100 node cluster)

N~
Ql
o0 0
I I
™
™

Hadoop HadoopBM Spark | Hadoop HadoopBM Spark

Logistic Regression

K-Means

Spark Improves MapReduce Over

®* Easy for programmers because you express your computation by
chaining atomic operators

* Much fewer |/O -> very improved Al

Spark Conse

* Debuggabillity
®* Bulky
* Map-reduce is not bulky as it works well if you only have one

worker. That's why now every PL has a “map” function

ol

Modern Spark ecosystem

Compelling feature: enables integration/composition of multiple domain-specific frameworks
(since all collections implemented under the hood with RDDs and scheduled using Spark scheduler)

‘% sqlCtx = new HiveContext(sc)
results = sqlCtx.sql(
r SQL "SELECT * FROM people")

names = results.map(lambda p: p.name)

Spa

Interleave computation and database query
Can apply transformations to RDDs produced by SQL queries

K

SpQrK Ml_‘ib points = spark.textFile("hdfs://...")

.map(parsePoint)

Machine learning library build on top of Spark abstractions. model = Kkveans. train(points, k=10)

& graph = Graph(vertices, edges)

Spark® GraphX hecoages ~ spark. textrile(mafs://..."

graph2 = graph.joinVertices(messages) {
(id, vertex, msg) => ...

GraphLab-like library built on top of Spark abstractions. ,

Story time: Spark and Databricks

* |[nitially just an open-source project by a few students

* The community grows because of advantages over Hadoop
and Map-reduce

* Students were about to graduate and could not commit time to
those projects, what'’s nexte

* “We asked Hortonworks if they wanted to fake over Spark...They
were not willing... We started Databricks.”

* Hortonworks -> later merged with Cloudera at 2019

Spark and Databricks

* Cloudera: data platform company, founded by Hadoop authors
®* Used to be a unicorn / high-profile / high-tech company
* Was beat hard by Databricks / Showtlake
* Went to public 2017, stock price keeps declining..., merged with
Hortonworks in 2018, went to private in 2021 after being acquired by

Investment companies.
* Databricks: 7 cofounders, Initial CEO is Prof. lon Stoica.

* They fried to sell Spark but were unsuccessful
* Switched to Ali Ghodsi: lranian-Swedish, visitor to UC Berkeley, no US-

born nor US-educated

Spark and Databricks

®* Databricks struggled for quite a few years
® Raised up to Series | (Seed, A, B, C,D,E F, G, H,)
* Almost failled during 2018 — 2020
* Data warehousing and OLAP gradually become a business, whye

* Competitors all failed
® Customer Education
* Data indeed bigger and bigger
* Intended to go public in 2022, but hit covid
* Valued at 100B today (is there any bubble?)
* Create 7 billionaires
* Competitions with Snowtlake are infense

99

After Spark:
All Modern Data/ML Systems follow a similar architecture

Programs Manifest

Syntax Operators A fixed set of operators

A frusted runtime with a small
set of pre-loaded

Runtime . .
implementations

Compiler

——
——
——
cecue

Executable Executable

After Spark: Many new systems

sk

Graphlab

Naiad 1F TensorFlow

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Summary: Batch Processing
	Slide 3: Next: Stream Processing
	Slide 4: Recall: Instruction
	Slide 5: Recall Mem Hierarchy
	Slide 6: How to measure the impact of I/O
	Slide 7: Arithmetic Intensity
	Slide 8: Arithmetic intensity
	Slide 9: Which program performs better? Program 1
	Slide 10: Which program performs better? Program 2
	Slide 11: Core Problem of Map-reduce
	Slide 12: PageRank Computation
	Slide 13: Iterative algorithms must load from disk each iteration
	Slide 14
	Slide 15: Goals
	Slide 16: Goals
	Slide 17: Three Necessary Conditions
	Slide 18: Typical Server Node
	Slide 19: Typical Server Node
	Slide 20: Memory Capacity
	Slide 21: Memory Price/Byte Evolution
	Slide 22: Typical Server Node
	Slide 23
	Slide 24: SSDs vs. HDDs
	Slide 25: Typical Server Node
	Slide 26: Ethernet Bandwidth
	Slide 27: Typical Server Node
	Slide 28: What Does This Mean?
	Slide 29: Three Necessary Conditions
	Slide 30: Stream Processing
	Slide 31: Resilient distributed dataset (RDD)
	Slide 32: RDD: Spark’s key programming abstraction:
	Slide 33: Predefined Set of Operators
	Slide 34: RDD transformations and actions
	Slide 35: Repeating the map-reduce example
	Slide 36: Another Spark program
	Slide 37: Discussion
	Slide 38: How do we implement RDDs?
	Slide 39: How do we implement RDDs?
	Slide 40: RDD partitioning and dependencies
	Slide 41: Implementing sequence of RDD ops efficiently
	Slide 42: Narrow dependencies
	Slide 43: Wide dependencies
	Slide 44: Wide dependencies
	Slide 45: Scheduling Spark computations
	Slide 46: Implementing resilience via lineage
	Slide 47: Upon node failure: recompute lost RDD partitions from lineage
	Slide 48: Spark Performance
	Slide 49: Spark Improves MapReduce Over
	Slide 50: Spark Cons?
	Slide 51: Modern Spark ecosystem
	Slide 52: Story time: Spark and Databricks
	Slide 53: Spark and Databricks
	Slide 54: Spark and Databricks
	Slide 55: After Spark: All Modern Data/ML Systems follow a similar architecture
	Slide 56: After Spark: Many new systems

